ai_sandbox/speech-speech/backend/api.py

61 lines
1.4 KiB
Python

from openai import OpenAI
from fastapi import FastAPI, File, Response, Request
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from io import BytesIO
app = FastAPI()
openAI_clinet = OpenAI()
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_methods=["*"],
allow_headers=["*"],
)
class ConversationMessege(BaseModel):
role: str
content: str
class Conversation(BaseModel):
messages: list[ConversationMessege]
@app.post("/get-text")
async def stt(audio: bytes = File()):
with BytesIO(audio) as f:
f.name = "audio.mp3"
transcript = openAI_clinet.audio.transcriptions.create(
model="whisper-1",
file=f,
response_format="text",
)
data = {"len": len(audio), "user-transcript": transcript}
return data
@app.post("/conversation")
async def get_next_response(request: Request):
messages = await request.json()
res = openAI_clinet.chat.completions.create(
model="gpt-3.5-turbo",
messages=messages,
)
res_msg = res.choices[0].message.content
role = res.choices[0].message.role
print(messages)
print(res_msg)
return {"role": role, "content": res_msg}
@app.get("/speak")
def tts(text: str):
res = openAI_clinet.audio.speech.create(
model="tts-1", voice="nova", input=text, response_format="mp3"
)
return Response(content=res.content, media_type="audio/mp3")